Technology Innovation Needs Assessment (TINA)

UK best practice on low carbon innovation

Alessandro Casoli
Strategy Manager
February 2016
Agenda

› The Carbon Trust
› The UK innovation ecosystem
› TINA methodology
› Impacts of the TINAs in the UK
The Carbon Trust

› We are an independent, not-for-profit organization created by the UK government in 2001 to accelerate the move to a sustainable, low carbon economy

› Key part of the UK’s low carbon innovation and energy efficiency strategy

› Impartial partner of leading organisations around the world, helping them contribute to and benefit from a more sustainable world

› Working internationally since 2010 – operating worldwide with 170 employees from offices in London, Washington, Beijing, Mexico City and Johannesburg.

Our mission is to accelerate the move to a sustainable, low carbon economy
We help our clients benefit from the opportunities of sustainable, green growth

ADVICE

Business Advice
Helping businesses capture the opportunities in a sustainable low carbon world

Government Advice
Providing cutting-edge policy advice and insights on the transformation of markets

Public Sector Advice
Enabling the public sector to cut costs and emissions

FOOTPRINTING

Measuring
Understanding the environmental impact of an organisation, product or service

Certifying
Providing independent verification of organisational or product footprints to endorse sustainable leadership

TECHNOLOGY

Implementation and Finance
Providing expertise and support to businesses to put energy efficiency plans into action

Innovation
Partnering with companies and governments to overcome barriers to innovation and create value from clean technology
Agenda

› The Carbon Trust

› The UK innovation ecosystem

› TINA methodology

› Impacts of the TINAs in the UK
The UK has many public innovation support bodies, mostly coordinated by the LCICG

Key
- **LCICG Core members**
- **LCICG Associate members**
- **Not LCICG members**

The Low Carbon Innovation Coordination Group (LCICG) includes almost all the public sector funders of innovation in low carbon technologies and is responsible for ensuring their coordination.

Basic research
- RCUK/EPSRC
 - Supergen
- HEFCE
 - UK Research Investment Fund

R&D
- Innovate UK (formerly TSB)
 - Catapults
 - SBRI
- Energy Technologies Institute
 - Energy Storage & Distribution
 - Carbon Capture & Storage

Demonstration
- Innovation Knowledge Centres
- Carbon Capture & Storage

Deployment
- The Crown Estate
 - Support offshore wind deployment
- Scottish Enterprise
 - Low Carbon Implementation Plan

Commercialisation
- Department of Enterprise, Trade and Investment, Northern Ireland
 - Invest Northern Ireland
- Scottish Government
 - Low Carbon Economic Strategy
 - Energy Tech. Partnership
- Welsh Government
- UK Trade and Investment

Energy Savings Trust
- Heat pumps trial
- Smart metering trial
- Micro-CHP trial
- Boiler trial

Central Government direct support
- BIS – UK Innovation Investment Fund
- DECC – CCS demonstration

Carbon Trust
- Polymer Fuel Cell Challenge
- Offshore Wind Accelerator
- Entrepreneurs Fast Track
- TINAs

DEFRA
- WRAP

DCLG
- Regulations for buildings

Department for Transport
- Promotes innovation in transport

Note: Programs listed here are just some examples and activity may spread further across the maturity range than as depicted here.
Significant effort is spent coordinating UK innovation activity on a national basis

- The UK had a large coordination challenge, so it created the Low Carbon Innovation Coordination Group (LCICG)
- Having created a coordination body it is very important to give it the right tasks and responsibilities
- The LCICG initially focused on analysing and building consensus on priorities *internally* through the TINAs
- More recently the LCICG has focussed on communicating its consensus views *externally*
Technology Innovation Needs Assessments (TINAs)

- The Carbon Trust developed and delivered the TINAs with the UK’s major public sector backed funding and delivery bodies in the area of ‘low carbon innovation’

- The TINAs aim to identify and value the key innovation needs of specific low carbon technology families to inform the prioritisation of public sector investment in low carbon innovation

- The TINAs apply a consistent methodology across a diverse range of technologies, and a comparison of relative values across the different TINAs is as important as the examination of absolute values within each TINA
Agenda

› The Carbon Trust
› The UK innovation ecosystem
› **TINA methodology**
› Impacts of the TINAs in the UK
TINA purpose and framework

TINA: Technology Innovation Needs Assessment

Purpose: To inform government decisions by providing a robust and consistent evidence base on the innovation needs of technologies likely to be important in delivering the UK’s energy and climate change targets and/or economic benefits across low carbon technologies

Application: Can be applied to any technology area, though most successful and impactful applications have been for those at very early stages of development

Framework:

Develop technology and market scenarios
- Emissions reduction targets and energy needs
- Technology scope and stage of development
- Technology challenges and cost reduction
- Growth scenarios

Assess potential benefit to the UK
- Meeting abatement targets at lowest cost
- Deployment cost reduction over alternative
- Creating business value
- UK competitive advantage
- UK value added

Assess need for public sector support
- Extent of market failure
- Degree to which the UK can rely on innovation overseas

Develop potential solutions
- Requirements to achieve innovation and its benefits
- Existing UK and global support
- Public sector interventions that offer best value for money
Prioritising low carbon technologies for innovation support – how the UK did it

<table>
<thead>
<tr>
<th>UK Carbon abatement potential</th>
<th>UK carbon abatement vs. economic value creation potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Biomass CCS</td>
<td>Nuclear fission</td>
</tr>
<tr>
<td></td>
<td>• Appliances</td>
</tr>
<tr>
<td></td>
<td>• Lighting</td>
</tr>
<tr>
<td></td>
<td>• Biomass to power</td>
</tr>
<tr>
<td></td>
<td>• CO₂ transport/storage</td>
</tr>
<tr>
<td>Biogas (BioSNG and AD)</td>
<td>Hydroelectric (small/large)</td>
</tr>
<tr>
<td>Biomass to heat</td>
<td>• Conventional heat/cooling</td>
</tr>
<tr>
<td>High efficiency CCGT</td>
<td>• Solar hot water</td>
</tr>
<tr>
<td>Rail (Diesel/Electric)</td>
<td>• Small power fuel cells</td>
</tr>
<tr>
<td>Marine transport</td>
<td>• Hydrogen prod./storage</td>
</tr>
<tr>
<td>Thermal storage</td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td>Coal CCS</td>
</tr>
<tr>
<td>Solar thermal electric</td>
<td>Hydrogen FCV</td>
</tr>
<tr>
<td>Community CHP</td>
<td>Solar PV</td>
</tr>
<tr>
<td>Small wind</td>
<td></td>
</tr>
<tr>
<td>Nuclear fusion</td>
<td></td>
</tr>
<tr>
<td>MicroCHP</td>
<td></td>
</tr>
</tbody>
</table>

| NOTE: This analysis is now out of date, presented for illustration only |

Source: CT Analysis
TINA process in practice

Scoping

Technology investigation

Value of innovation

Value in business creation

Case for public sector activity

Conclusion w/o cost

Key requirements

Potential activities
Identified innovation programmes in offshore wind

<table>
<thead>
<tr>
<th>Sub-area</th>
<th>Key areas for public sector innovation activity/investment</th>
<th>Desired outcomes</th>
<th>Estimate total costs, 2010-15</th>
<th>Est. public sector contrib.</th>
<th>Rough benefit / cost</th>
<th>Other benefits<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine</td>
<td>▪ Scale up funding for test facilities, new concepts, data pooling</td>
<td>▪ “Disruptive” technology enters market</td>
<td>c. £430mn</td>
<td>Up to £100mn</td>
<td>Medium</td>
<td>▪ All areas will support the deployment of lower cost offshore wind, thereby generating fuel poverty and energy security benefits</td>
</tr>
<tr>
<td></td>
<td>▪ Provide funding for monitoring</td>
<td>▪ Validated models for designing optimised arrays</td>
<td>£20mn</td>
<td>£5mn</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ Develop supply chain capability</td>
<td>▪ Encourage investment in UK turbine supply chain capability</td>
<td>£100mn</td>
<td>£20-30m</td>
<td>tbd</td>
<td></td>
</tr>
<tr>
<td>Foundation</td>
<td>▪ Funding for manufacturing development of deep water foundations</td>
<td>▪ Scale manufactured foundations</td>
<td>£100mn</td>
<td>£35mn</td>
<td>High</td>
<td>▪ Foundations, installation and O&M may lead to more specific community benefits</td>
</tr>
<tr>
<td>Collection & transmission</td>
<td>▪ Scale up funding to incentivize supply chain to respond</td>
<td>▪ Effective solution identified and exploited</td>
<td>£15mn</td>
<td>£3mn</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>▪ Funding to build and test new vessels / barge</td>
<td>▪ Optimised process from foundation manufacture to sea bed installation</td>
<td>£170mn</td>
<td>£45mn</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>O&M</td>
<td>▪ Funding to build and trial novel vessels and access systems</td>
<td>▪ Validated low cost O&M approached</td>
<td>£25mn</td>
<td>£6mn</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>
The UK TINAs recommended 135 programmes costing ~£2.8bn. Limited budgets necessitate further programme prioritisation.

Source: TINAs, CT Analysis
Using the TINA criteria programmes can be prioritised to match the available funding

<table>
<thead>
<tr>
<th>TINA</th>
<th>Subarea (each subarea has specific innovation programmes attached to it)</th>
<th>Value of Innovation Savings to the UK (Ranked)</th>
<th>Value of UK Business Creation (Ranked)</th>
<th>UK Competitive Advantage</th>
<th>Extent of Market Failures</th>
<th>Rely on others</th>
<th>Benefit of UK Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offshore Wind</td>
<td>Turbines (yield/reliability)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. EE</td>
<td>Low Carbon Cement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. EE</td>
<td>Low Carbon Cement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>Waste Management, Reprocessing, Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>Waste Management, Reprocessing, Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore Wind</td>
<td>Turbines (yield/reliability)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat</td>
<td>Heat Pumps (design ...)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore Wind</td>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore Wind</td>
<td>Foundation (30-60m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio</td>
<td>Woody/grassy crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda

› The Carbon Trust
› The UK innovation ecosystem
› TINA methodology
› **Impacts of the TINAs in the UK**
The TINAs have had both direct and indirect impacts on UK policy making and have the potential for increased impact

<table>
<thead>
<tr>
<th>Intended use</th>
<th>Broader use</th>
<th>Increased impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>› Create a robust, shared knowledge base to guide government R&D investment decisions</td>
<td>› Informing academic and university research
› Feeding into the UK policy debate
› Providing a key part of the evidence base to guide government’s decarbonisation and technology strategy, linked to medium term carbon budgets</td>
<td>› The Carbon Trust is now working with the British government to explore additional ways in which the TINAs could have impact
› This could include the tailoring and application of the methodology to other countries</td>
</tr>
<tr>
<td>› Create a common understanding of innovation needs and the case for support to facilitate coordinated planning between LCICG members</td>
<td></td>
<td></td>
</tr>
<tr>
<td>› Allow cross-comparison and prioritisation of R&D needs between and within technology areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>› Provide government with the evidence needed to send clear messages to developers about UK priorities and approach</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The TINAs have been very successful in achieving all their objectives under the *Intended Use* category.

Guiding UK investment decisions and allowing between- and within-technology prioritisation

- 85% of programmes supporting low carbon technologies from 2012 onwards target technology needs identified in the TINAs.
- Prioritisation of government funding between technologies corresponds with the recommended prioritisation found in the TINAs.

Creating a common understanding among UK stakeholders

- Each TINA undergoes a long and complex consultation process involving stakeholders; this has been an effective way of building consensus and resolving conflicts among technology experts, creating a common view.

Providing private sector stakeholders with an understanding of government thinking on low carbon innovation

- Industry are involved throughout the TINA process, during interviews and workshops for both data gathering and consensus building.
- TINA workshops will often gather all of the major actors in an industry into one room for consensus building exercises: the TINAs act as a conduit that channels government’s approach to policy making.
The TINAs have also achieved impact beyond their stated objectives – **Broader Use**

Informing academic and university research

› The TINAs have multiple academic citations: the Carbon Trust has identified at least 49 instances where the TINAs have been cited in academic publications, of which over 50% pertain to UK-focussed research

Feeding into the UK policy debate

› The Committee on Climate Change’s recent reports on cost reduction in offshore wind and potential cost reduction mechanisms for CCS cite the TINAs as key literature feeding into their research.

Additional analysis on top of the TINAs has informed the following Government projects

› LCICG Strategic Framework
› Objective Driven Integrated Programmes (ODIPs)
› Support for DECC Strategy in the 2015 Comprehensive Spending Review
› Additional ad hoc policy support
The TINAs could be extended and scaled up to have increased impact

- Extending the TINA scope to consider innovation needs and cost reduction outside of R&D;
- Including an analysis of the relationship between deployment, innovation and cost reduction;
- Creating a central set of deployment scenarios to be used for each technology;
- Shifting to a systems perspective when considering technologies;
- Including greater detail on potential innovation programmes;
- Including support for decarbonisation and technology strategy into the TINA scope.

These improvements could be adopted in the tailoring of the TINA methodology to Mexican needs

Source: LCICG spending 2010-2015; Carbon Trust Analysis of Government RD&D programmes, Carbon Trust analysis of academic publications
Thank you

alessandro.casoli@carbontrust.com
mexico@carbontrust.com
Whilst reasonable steps have been taken to ensure that the information contained within this publication is correct, the authors, the Carbon Trust, its agents, contractors and sub-contractors give no warranty and make no representation as to its accuracy and accept no liability for any errors or omissions. All trademarks, service marks and logos in this publication, and copyright in it, are the property of the Carbon Trust (or its licensors). Nothing in this publication shall be construed as granting any licence or right to use or reproduce any of the trademarks, services marks, logos, copyright or any proprietary information in any way without the Carbon Trust’s prior written permission. The Carbon Trust enforces infringements of its intellectual property rights to the full extent permitted by law.
The Carbon Trust is a company limited by guarantee and registered in England and Wales under company number 4190230 with its registered office at 4th Floor Dorset House, Stamford Street, London SE1 9NT. Published in the UK: 2015. © The Carbon Trust 2015. All rights reserved.